

TOPS @ Berkeley Lab

Esmond G. Ng

(EGNg@lbl.gov)

Lawrence Berkeley National Laboratory

What is TOPS

- □ TOPS = <u>Terascale Optimal PDE Simulations</u>.
- □ Funded by the Office of Advanced Scientific Computing Research (OASCR) of the Office of Science in the U.S. Department of Energy.
- □ Launched in July 2001 under the Scientific Discovery Through Advanced Computing (SciDAC) Program.
 - One of three <u>applied math</u> Integrated Software Infrastructure Centers (ISIC's).
 - One of 51 SciDAC projects in the Office of Science.

Goals of TOPS

- Solver technology.
- Not just algorithms, but also <u>vertically integrated software</u> suites.
- Portable, scalable, extensible, tunable implementations.
- Starring ARPACK, Hypre, PETSc, SuperLU, and ScaLAPACK, among other existing packages.
- Motivated by representative applications, intended for many others.

Driving Force Behind TOPS

- □ Three driving SciDAC science applications in the original plan:
 - LBNL/SLAC-led "Advanced Computing for 21st Century Accelerator Science and Technology".
 - ORNL-led "Shedding New Light on Exploding Stars: Terascale Simulations of Neutrino-Driven SuperNovae and Their NucleoSynthesis".
 - PPPL-led "Extended Magnetohydrodynamic Modeling".
- Many more application partners now.
 - QCD, chemistry, ...

Who are in TOPS

- Three DOE laboratories ...
 - Argonne National Laboratory (Jorge Moré, Barry Smith)
 - Lawrence Berkeley National Laboratory (Esmond Ng)
 - Lawrence Livermore National Laboratory (Robert Falgout)
- □ Seven universities ...
 - Carnegie Mellon University
 - Columbia University (David Keyes lead PI)
 - New York University
 - Old Dominion University
 - University of California, Berkeley
 - University of Colorado, Boulder
 - University of Tennessee, Knoxville

What Kind of Solvers

□ Include:

- Linear system solvers: Ax = b
- Nonlinear implicit solvers: F(x) = 0
- Adaptive time integrators for stiff systems: f(x',x,t) = 0
- Optimizers: $min_{ij} \phi(x,u) s.t. F(x,u) = 0$
- Eigenvalue solvers: $Ax = \lambda Bx$
- Software integration.
- □ Performance optimization.

Scope of TOPS

Indicates dependence

TOPS @ Berkeley Lab

- □ Areas:
 - Linear Equations Solvers: Ax = b
 - Sparse direct methods
 - Preconditioning techniques for iterative methods
 - Eigenvalue Solvers: $Ax = \lambda Bx$
- Members:

<u>Staff</u> <u>Postdocs</u>

Parry Husbands Laura Petrescu

Sherry Li Ali Pinar

Osni Marques

Esmond Ng <u>Visiting Scientist</u>

Chao Yang Weiguo Gao

Application Partners

- □ SLAC's Electromagnetic Systems Simulations in the Accelerator Science and Technology SciDAC Project.
 - Linear Algebra large-scale sparse eigensolvers, sparse linear equations solvers (LBNL, Stanford, SLAC).
 - Load Balancing improving performance and scalability (LBNL, Sandia, SLAC).
- □ Center for Extended Magnetohydrodynamic Modeling.
 - Linear Algebra solution of large sparse ill-conditioned linear systems (LBNL, Univ. of Wisconsin).

Designing Accelerator Structures

Modeling of accelerator structures requires the solution of the Maxwell equations.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}; \nabla \times \mathbf{H} = -\frac{\partial \mathbf{D}}{\partial t}$$
$$\nabla \cdot \mathbf{D} = \mathbf{0}; \nabla \cdot \mathbf{B} = \mathbf{0}$$
$$\mathbf{D} = \mathbf{e}\mathbf{E}; \mathbf{B} = \mathbf{m}\mathbf{H}$$

□ Finite element discretization in frequency domain leads to a large sparse generalized eigenvalue problem.

$$K x = I M x , K \ge 0; M > 0$$

Designing Accelerator Structures

- Design of accelerator structures.
 - Modeling of a single accelerator cell suffices.
 - Relatively small eigenvalue problem.
 - There is an optimization problem here ...
 - But need fast and reliable eigensolvers at every iteration.

Need to compute a large number of frequency modes.

Challenges in Eigenvalue Calculations

- □ 3-D structures ⇒ large matrices.
 - Need very accurate interior eigenvalues that have relatively small magnitudes.
 - Eigenvalues are tightly clustered.
 - When losses in structures are considered, the problems will become complex symmetric.
- Omega3P has been able to compute eigen modes of large accelerator structures with large number of DOF's (without losses).

Spectral Distribution

Large-scale Eigenvalue Calculations

- □ Parallel shift-invert Lanczos algorithm.
 - I deal for computing interior and clustered eigenvalues.

$$K x = I M x \rightarrow M(K - sM)^{-1} M x = mM x$$

- Need solution of sparse linear systems.
- □ SLAC: inexact solution + Newton-type correction.
- LBNL: exact shift-invert Lanczos.
 - Require <u>complete factorizations of (sparse) matrices</u>.
 - Exploit work on sparse direct solvers in TOPS.
 - Combine SuperLU_DIST with PARPACK to obtain a parallel implementation of a shift-invert Lanczos eigensolver.
 - Enable accurate calculation of eigenvalues, allow verification of other eigensolvers, and provide a baseline for comparisons.

High Performance Direct Linear Solver

- SuperLU and SuperLU_Dist.
 - Direct solution of sparse linear system
 Ax = b.
 - Efficient, high-performance, portable implementations on modern computer architectures.
 - Support real and complex matrices, fill-reducing orderings, equilibration, numerical pivoting, condition estimation, iterative refinement, and error bounds.

Quick Tour of Results

Quick Tour of Results

Status of Eigenvalue Calculations

- □ Accomplishments:
 - TOPS/Exact Shift-invert Lanczos and Omega3P/Inexact Shift-invert Lanczos produce the same eigenvalues.
 - ESIL is faster than ISIL, but requires more memory.
 - NERSC IBM SP has >6 terabytes of real memory.
 - Exact shift-invert Lanczos has been integrated into Omega3P as a run-time option.
- ☐ The accelerator application helps motivate new developments & improvements in SuperLU.
 - Accommodate distributed input matrices.
 - Parallel symbolic factorization (in progress).
 - Improve triangular solution (in progress).

Highlights of Eigenvalue Calculations

- □ Largest eigensystem solved by LBNL team:
 - 7.5M DOFs, 304M nonzeros
 - 6,260M nonzeros in factors, requiring 2.5 hours to compute 10 eigenvalues close to a single shift using 24 processors (on 3 nodes) on NERSC IBM SP.
- Largest eigensystem solved by SLAC team:
 - > 90M DOFs with a sparse matrix factorization.

TOPS Meets Fusion

- NIMROD, developed at the Center for Extended Magnetohydrodynamic Modeling (CEMM), is a parallel simulation code for studying the nonlinear macroscopic electromagnetic dynamics in fusion plasmas.
 - Have difficulties in convergence when iterative methods are used in solving linear systems.
- □ Joint work between CEMM and TOPS
 has led to a performance improvement
 in NI MROD by a factor of <u>5-10</u> on
 NERSC I BM SP, "equivalent of <u>3-5</u> years
 progress in computing hardware" (Dalton Schnack of SAIC).

SuperLU Speeds Up Fusion Code

- Parallel SuperLU has been incorporated into NI MROD as an alternative linear solver.
 - In updating physical fields, SuperLU is used as a direct solver and is >100x and 64x faster on 1 and 9 processors, respectively.
 - A larger linear system in the time-advance has to be solved by the conjugate gradient method. SuperLU is used to factor a preconditioning matrix. This resulting in a 5-fold improvement in speed.

Load Balancing in EM Simulations

- Load balancing problem in Tau3P, a time-domain code for electromagnetic simulations.
 - Use of unstructured meshes and refinements lead to matrices for which nonzero entries are not evenly distributed.
 - Make work assignment and load balancing difficult in a parallel setting.
 - SLAC's Tau3P currently uses ParMETIS to partition the domain to minimize communication.

Matrix Distribution over 14 cpu's

Parallel Speedup

Load Balancing in EM Simulations

- □ Collaboration between SLAC and TOPS (+ Sandia) has resulted in improved performance in Tau3P.
 - Sandia's Zoltan library is implemented to access better partitioning schemes for improved parallel performance over existing ParMETIS tool through reduced communication costs.

8 processor partitioning of a 5-cell RDDS with couplers on NERSC IBM SP					
	Tau3P Runtime	Max. Adj. Procs.	Max. Bound. Objects		
ParMETIS	288.5 sec	3	585		
RCB-1D	218.5 sec	2	3128		
RCB-3D	345.6 sec	5	1965		

Load Balancing in EM Simulations

ParMETIS - Sanda De La Contraction de Contraction d

SOBOMBANDA DE LA CONTROL RCB-1D

Performance results on NERSC IBM SP for a 55-cell structure						
# of processors	ParMETIS run-time	ParMETIS max. adj. procs	RCB-1D run time	RCB-1D max. adj. procs		
32	1455.0	4	1236.6	2		
64	736.6	4	627.2	2		
128	643.0	10	265.1	2		
256	360.0	11	129.2	2		
512	292.1	14	92.3	4		

□ Significant improvement obtained from using RCB-1D over ParMETIS on a 55-cell structure due to the linear nature of the geometry.

Summary and Future Plans

- □ TOPS/LBNL has contributed to great successes in some SciDAC applications.
- □ Future Plans:
 - Sparse direct solvers.
 - More improvements (e.g., symbolic factorization & triangular solutions) to make sparse direct methods more scalable.
 - Fill-reducing orderings and scheduling issues.
 - Eigenvalue calculations:
 - Other eigen solvers to handle extremely large problems (e.g., multilevel algorithms, Jacobi-Davidson).
 - Incomplete factorization algorithms for iterative methods.
 - Other applications.
- More information available at http://www.tops-scidac.org.

